高考数学一轮复习:数学答题方法

逍遥右脑  2014-07-01 10:30

【摘要】高一高二的同学忙着准备期中考试的时候,高三的同学们正在进行紧张的高考前地理论复习,下面是准备的“高考数学一轮复习:数学答题方法”欢迎大家点击参考!

对于中学阶段用于解答数学问题的方法,可将其分为三类:

(1)具有创立学科功能的方法。如公理化方法、模型化方法、结构化方法,以及集合论方法、极限方法、坐标方法、向量方法等。在具体的解题中,具有统帅全局的作用。

(2)体现一般思维规律的方法。如观察、试验、比较、分类、猜想、类比、联想、归纳、演绎、分析、综合等。在具体的解题中,有通性通法、适应面广的特征,常用于思路的发现与探求。

(3)具体进行论证演算的方法。这又可以依其适应面分为两个层次:第一层次是适应面较宽的求解方法,如消元法、换元法、降次法、待定系数法、反证法、同一法、数学归纳法(即递推法)、坐标法、三角法、数形结合法、构造法、配方法等等;第二层次是适应面较窄的求解技巧,如因式分解法以及因式分解里的“裂项法”、函数作图的“描点法”、以及三角函数作图的“五点法”、几何证明里的“截长补短法”、“补形法”、数列求和里的“裂项相消法”等。

我们知道,数学是关于数与形的科学,数与形的有机结合是数学解题的基本思想。数学是关于模式的科学,这反映了在数学解题时,需要进行“模式识别”,需要构建标准的模型。往往遇到的问题是标准模型里的参数是需要待定的,这说明待定系数法属于解题的通性通法。数学是一种符号,引入符号可以将自然语言转换为符号语言,通过中间量的代换,就能将复杂问题简单化。数学解题就是一系列连续的化归与转化,将复杂问题简单化、陌生问题熟悉化,其消元、减少参变元的个数是常用的方法。在代数式的变形中,则往往要分离出非负的量,配方技术是经常使用且很奏效的方法。

数形转换、待定系数、变量代换、消元、配方法等是中学数学解题的通性通法。把几何的直观推理、代数的有序推理、解题的通性通法与具体的案例结合起来,整体把握数学解题的通性通法,抓住通性通法的本质,科学有效地实施解题分析、解题思维链的形成、解题后的反思与优化,从而通过有限问题的训练来获得解答无限问题的解题智慧。

总结:以上就是“高考数学一轮复习:数学答题方法”的全部内容,请大家认真阅读,巩固学过的知识,小编祝愿同学们在努力的复习后取得优秀的成绩!

相关精彩内容推荐:


版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至 lxy@jiyifa.cn 举报,一经查实,本站将立刻删除。
上一篇:高三数学:不怕难题不得分 就怕每题都扣分
下一篇:2014英语考试中过渡性连接词汇总

逍遥右脑在线培训课程推荐

【高考数学一轮复习:数学答题方法】相关文章
【高考数学一轮复习:数学答题方法】推荐文章